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We consider the problem of impact of a perfectly rigid flat-ended stamp on a 
large viscoelastic plate, and study the case when a spring with a linear charac- 
teristic is inserted between the impacting stamp and the plate. The present paper 
represents a generalization of the results previously obtained in [l]. 

1. If we assume that the deflection UJ (t) of a perfectly elastic plate [1] is connected 
with the force P (t) acting on it by the following impulse relation 

then the corresponding relation for the case when the elastic lag is present, will be ob- 
tained when the constant PO is replaced by the operator 

“, mx 3” (1 + If*) (1.2) 

Here H* is a positive integral operator with the lag kernel H (t - T) > 0, and we have 

u*j _ i If (t - T) 5 (T) (ET ! (1.3) 
0 

where Y,, is a Poisson’s ratio, E, is the modulus of elasticity, h is thickness, y is the 
density of the plate material and c(t) is a function of time. 

Thus in the present problem we shall derive the equation defining the force P (t) to 
be determined, using the following relation as the starting point 

I I 

1” (t) = PJY (4 + PO s II (t - T) y (T) tit, y (t) ~1 * 1’ (5) cc< 
s 

(I.$) 
0 0 

The total displacement of the stamp is equal to s -+ ~3, where s denotes the compression 

of the spring, therefore the momentum equation for the stamp 

mu (t) = 112v0 - y (t) 

where v (t) is the velocity of the stamp of mass in and o0 is the initial velocity of the 
stamp,yields, with the relation P = ks, where k is the spring rigidity coefficient taken 
into account, 1 rl’l’ $11. r__~ 

Tclt’l dt”-:- 
(1.5) 

I,?, 
The initial conditions are 

P (0) =- 0, 
f/P 

( J 
x I __. >= Ix,, 

Differentiating (1.4) twice with respect to t , we obtain 

(1 .q 
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t 

$&3”~+i+(t--r)~dr (1.7) 

0 

The validity of (1.7) is implied by the folowing relations, with the conditions Y (0) = 0 
and P (0) = 0 taken into account 

t t t 

d dt a ’ H (t - z) y (T) dz = 5 $ H (E) y (t - El dE = s H (E) & Y (t - t) dE = 
0 - 0 0 

t t 

s H (t - z) 3 dz = s H (t - z) P (z) di 

0 0 

&2 f 

t t 

s 
H (t - z) y (r) dz = & 

s 

. 

dt~ H (t - z) P (z) dz = 
s 

dP 
H(t---)cl,dz 

0 0 0 

Replacing in (1.5) d2w / dt2 by its expression given in (1.7). we obtain the integro-dif- 
ferential equation defining the unknownforce. Taking into account the formulas (1.2) 
and (1.3) we can write this equation in the operator form 

2, In accordance with the method of integral operators r2] we write the expression 
for the force P (2) defined by the equation (1.8) in the form 

(2.1) 

Here we have the operators 4, = -40 (1 + H*) and Bt2 = 2 - At2 and the parameters 

L‘l~ = kk / 2 and I= I:lnr. Expressing the operator AtiBtsn in terms of the integral ope- 
rator H* we obtain, from (2. l), 

p (t) = PO (t) + @ (R*} (2.2) 
Here 

t 
H*y = s HT (t - z) 5 (z) t/z (1. = i, Ql (2.3) 

0 
and H, (t - T) are the iterated kernels of the initial lag kernel H (t - 7). 

The series defining P (1) converges uniformly on any finite interval of variation of 
t, provided that the kernel H (t - T) is regular or weakly singular. It can be confirmed 
that the function P (t) defined by the formula (2.1) satisfies Eq. (1. 8) and the initial 
conditions (1.6), since 

(2.9 
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The property of commutativityof (2.4) follows from the expression for R* since, as it 
was shown in Sect. 1. the operator H * commutes with the differential operators d” / dtY 
when acting on a function which vanishes, together with its first derivative at t = 0. 

Let the operator H* be expressed in terms of the resolvent operator Q* (-11) accord- 
ing to the formula H* = xQ* (-q), where x > 0 and 11 > 0 represent the rheological 
constants. In this case the process of finding the iterated kernels Hr (t - 7) can be re- 

placed by a simpler operation [2],since the power of the operator 

(-I)- a-Q* (-11) 
**?=f (r__1)! ap (r = 2, 3, . ..) (2.5) 

yields, at acting on 1 2nti+1 , the following expression 

We note that in the physical sense the ratio x / n is dimensionless and can assume any 
positive value. 

From the expansion (2.3), for PO (t) it follows that 

I 

vok - ewAot sin Bat, rnk/3$ < 4, Bo” > 0 
Bo 

p. (t) z 

i 

c,,kt CA0 , rnkao? = 4, 80” = 0 (2.6) 

z’ok 

_Voe 
-Aof sh qot, mkfio” > 4, Bd! < 0, q,,’ = /lo2 - 1 > 0 

When x = 0 , we have P (t) = PO (t). Therefore the function D {R*} takes into account 
the influence of the hereditary factor on the force P (t), while the function PO (t) 
corresponds to the perfectly elastic properties of the plate. 

The expression for the operator Bt 2 = Bo2 - Ao2 (2H* + H*2) shows that the inequa- 
lity Btt < 0 follows from the condition B o2 .< 0. Therefore the condition Bo2 < 0 is 

sufficient for the variation of the force P (t) to be aperiodic. The positiveness of the 
operator Bt2 is the necessary and sufficient condition for the variation of P (t) to have 

a periodic character, while the inequality Bo2 > 0 is only necessary for the realization 

of the periodic character since the condition Bt2 > 0 implies Bo2 > 0. 
Finally, if Bo2 = 0 and B 12 = 0 simultaneously, then I, - A,2 = 0 and 1 - Al” = 0, 

and we have At2 = Ao2. The latter is possible only when H+ E 0. Since in the initial 

model the influence of the aftereffect is assumed, therefore the present case should be 

excluded from our discussion, although it does not contradict the assertion that only the 
condition B;A > 0 guarantees the periodic character of the variation of the force P (t) 

and the invariable appearance of a component of the form (2.6) when m%“< 4 and 
uo” > 0. 

3. A more detailed analysis of the solution of the problem with aftereffect can only 
be performed by specifying the operator Q* (-_rl) and the corresponding approximation. 

The operator 3,* (-_rl) introduced in [3] belongs to the class of resolvent operators. 
Consequently, taking into account the approximation 

(3.1) 

corresponding to the results obtained in [4] and the expression (2. S), we obtain 
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(3.21 

pa 

q= r(2+a) ’ 
Pl 

L=i+qy 
6=2n+i+l 

O<Qll<l, -l<a,cO, 0 < L d ‘12 

The expression (3.2) makes it possible to express the power of the operator N* in terms 

of a conventional power expression. Therefore the series (2.1) can be summed and an 
explicit expression for the function P (t) obtained in the closed form. 

In the case Bt” > 0 which is of interest in the study of the process of printing, we 

have L’“?i 
P (t) z ~1 FA1’sin Bit (3.3) 

Here ,.il > AO while B,.2 < B,+ and we also have 

$1 -p(l++)*]<B?< &-CL) (3.4) 

since o < L < 11~ and p = mkp? / 4 < 1. 

The duration of impact can be found from the equation 

m(t)=n, if MA? (t) < k (3.5) 

The stamp rebounds from the viscoelastic plate at the instant t= t,, where t, is the 
root of (3.5) and t, > t,, where t, = n / B, being the instant of rebound of the stamp 
from a perfectly elastic plate. It follows that the duration of the impact is greater in 

the presence of a lag, than without it. The inequalities (3.4) imply that the first condi- 

tion of (2.6) guaranteeing the rebound of the stamp from the perfectly elastic plate, 
cannot guarantee that the stamp rebounds from a viscoelastic plate. 

We note that here the rheological properties of the plate play a decisive role, since 

the variation in the value of the ratio x/r1 appearing in the formulas (3.3) may be very 
large (naturally with the condition B12 > 0 observed), while the fractional dimension- 
less multiplier L is bounded by the inequalities 0 < L < 1/2. 

Since formally 0< x /q <oo, we have not excluded unsuccessful case in which it is 
practically impossible to bring the ratio k/m to the value at which a rebound of the 
stamp is guaranteed, i. e. to attain the condition B 12 > 0, unless the value of L can be 

reduced in the corresponding manner. The value of the recovery coefficient k-’ (dP / 
@I,[+ is smaller when the aftereffect is present, than when it is absent. 

Finally. the influence of the aftereffect is reflected in the increased displacement of 
the plate, and the ratio X /2n determines the relative increase in its maximum value. 

If for some reason it is required that the stamp does not rebound from the viscoelastic 
plate with a spring present between them, then we must proceed from the solution cor- 
responding to the condition B,? < 0. Then the force P (t) will vary aperiodically and, 
in accordance with the procedure derived above, its approximate expression can then 
be written in the form 

rnk 
P (t) z K ,--Al’ Sll q,t, q, (t) = A,” - 2 > 0 (3.6) 

The curve (3.6) has a single maximum and a horizontal asymptotics coinciding with 

the t -axis. 
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The influence of the elastic lag leads to reduction in the value of P,,,,: and in the 
ordinate of the point of inflection and, compared with the perfectly elastic case, they 
are both displaced to the right. In the perfectly elastic case 0 (t) decreases with tds 
at a slower rate than in the case when elastic lag is present. 

The case of Bo2 = 0 and BL2 = 0 also corresponds to the aperiodic variation of the 
force P (t) > o and, when t + x , we have limp (t) := 6. Its expression P (t) = PO (t) 
is given by the formula (2. 5). Looking at this case from the elastic lag angle we find, 
that we can regard it as the neutral case, since it must be encountered when the law of 
variation of P (t) changes from aperiodic to periodic, the change taking place when 

the conditions ensuring the existence of the inequality B,,2 < 0 are violated. We can 

eliminate such a situation by increasing the mass m of stamp to such an extent that 
Eq. (1.8) can be replaced by its limiting form obtained when m --f ~0, i.e. 

The solution of (3.7) with the initial conditions (1.6) has the form 

(3.7) 

(3.8) 

where 3, (-_r7; t - r) is the lag kernel due to Rabotnov [43. When “/, = 0 , the curve 

(3.8) has a horizontai asymptotics separated from the t-axis by the distance of 1 / fi,,. 

The asymptotics shifts downwards when % + 0 . 
The result obtained can be studied in greater detail using the approximation (3.1). 

Then we have 
p (f) 

(3.9) 

Expression (3.9) implies that the position of the horizontal asymptotics of the curve 
(3. 8) is determined by the quantity (11 / PO) (z <- 11)-l and the degree of its descent in 
comparison with the perfectly elastic case depends on the magnitude of the ratio %/II. 
Thus, when % X 11, the elastic lag produces a downward shift of the asymptotics which 
is twice as large as the shift occurring in the case of an elastic plate. 

BIBLIOGRAPHY 

1. Conway, H. D. and.Lee, H. C., Impact of an Indenter on a Large Plate. 
Trans. ASME,Ser.E., J. Appl. Mech., Vol. 37, N”-1, 1970. 

2. Rozovskii, M. I., Method of integral operators in the hereditary theory of 
creep. Dokl. Akad. Nauk SSSR, Vol. 160, N’4, 1965. 

3. Rabotnov, Iu. N., Equilibrium of an elastic medium with aftereffect. PMM 

Vol.12, N?l, 1948. 
4. Rozovskii, M. I., On certain special features of media with an elastic lag. 

Izv. Akad. Nauk SSSR, OTN, Mekhanika i mashinostroenie, N”2, 1961. 

Translated by L.K. 


